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It has been established that under certain conditions microscopic dielectric objects
can be trapped by a tightly focused laser beam. This phenomenon is commonly
referred to as an optical gradient trap. The recently developed vector finite element
method is used to visualize the interaction of the laser beam with the dielectric object
and to quantitatively predict the optical trapping efficiency. The vector finite element
method is an accurate and efficient approach when the incident beam wavelength is
comparable to the object size, and it has the advantage that it can be used to model
the trapping of arbitrarily shaped 3D objects.c© 2000 Academic Press

1. INTRODUCTION

It is well known that light waves have momentum and that this momentum can be
transfered to a solid object. This is often referred to as radiation pressure. It was first
demonstrated in 1970 that the force of radiation pressure could accelerate a micrometer-
sized polystyrene sphere [1]. Later it was demonstrated that the sphere could be levitated by
balancing the force of radiation pressure against the force of gravity [2]. In these experiments
it was observed that the force was predominately in the direction of power flow, with a slight
transverse force toward the center of the beam. In 1986 it was shown experimentally that
a microscopic dielectric object could be trapped by a tightly focused laser beam [3]. This
is referred to as a single-beam optical gradient trap, or “optical tweezers.” The optical
trapping force has been measured for dielectric spheres under a variety of conditions [4–6].
The trapping force depends on many factors including the size and dielectric constant of the
object, the wavelength and polarization of the laser beam, and the position of the object with
respect to the beam focus spot. The predominate application of optical traps is microbiology,
where optical traps have been used for the manipulation of cells [7–9] and the manipulation
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of viruses and bacteria [10, 11]. As another biological application, a properly calibrated
optical trap can be used to measure minute biological forces [12–14] within living cells.

Several different approaches for the theoretical modeling of optical gradient traps have
been investigated. In the geometrical optics (GO) approach the incident laser beam is
modeled by a collection of independent light rays [15–17]. These rays intersect the surface
of the dielectric object and are refracted/reflected according to the classic Fresnel formula.
In practice each ray is traced for only a few reflections. Each ray carries momentum, and
this momentum changes direction as the ray is refracted and reflected. The net force on the
dielectric object is then computed by summing the contribution of momentum transfer from
each individual ray. Since the force is proportional to the incident power it is common to
introduce the optical trapping efficiency

Q = cF

nP
, (1)

whereF is a component of the force,P is the power,c is the speed of light, andn is the
index of refraction. By convention the object is trapped ifQ> 0. GO modeling predicts that
dielectric objects will be trapped only for particular values ofn. For example, GO modeling
predicts that reflecting spheres and dielectric spheres withn< 1 will be pushed away from
the beam focus spot, rather than being trapped, which is in agreement with experimental
data. In addition GO modeling predicts that extreme beam cone angles are required for
trapping to occur, which is also in agreement with experiment. However, the GO model
is an asymptotic approximation and hence the predictedQ agrees with measured values
only for large spheres. This is a significant disadvantage of the GO model, since for most
applications the object size is comparable to the incident beam wavelength.

Several researchers have proposed modeling optical gradient traps using a finite series
approximate solution of Maxwell’s equations [4, 18, 19]. This approach yields accurate
full-wave electromagnetic fields within, and on the surface of, the dielectric sphere. The
primary difficulty with this approach is modeling the incident laser beam; however, fairly
accurate approximations of Gaussian beams have been developed [20]. Given the approx-
imate electromagnetic field on the surface of the sphere, the optical trapping force can be
computed by integrating the dot product of the surface outward normal with the Maxwell
stress tensor over the surface of the sphere. Optical trapping efficiencies computed in this
manner correlate well with measured values. The disadvantage of this approach is that it is
only valid for spheres or other simple shapes that admit to a series solution of Maxwell’s
equations.

In this paper, a vector finite element method is used to model an optical gradient trap.
The method solves Maxwell’s equations on an unstructured three-dimensional grid using
edge vector finite elements as a basis for the electric field and face vector finite elements
for the magnetic flux density. The method described in this paper is a generalization of
that originally proposed in [21]. The convergence of the method has been theoretically
analyzed by several researchers [22–25], and computational efficiency of the method has
been investigated [26]. There are several advantages of the vector finite element compared
to other grid-based methods such as nodal finite element, finite volume, and finite difference
methods. First, the method accurately models the discontinuity of the electric field across
material interfaces, which is particularly important for modeling optical gradient traps.
Second, the method is provably stable and energy conserving even for highly distorted
grids. Third, the method accurately models the divergence (or lack thereof) of fields and
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fluxes. The accurate modeling of the divergence is related to the problem of spurious modes
[27, 28], which often plague traditional nodal finite element methods. Since there are several
different variants of the vector finite element method, the method used in this study will be
derived below. The procedure for modeling an optical gradient trap is described in detail,
and predicted trapping efficiencies for microspheres are compared to measured values.
The computed trapping efficiencies compare well (withing the measured error bounds),
confirming the utility of the vector finite element method for optical force calculations.

2. VECTOR FINITE ELEMENT METHOD

There are a variety of ways to express Maxwell’s equations; in this paper the electric field
EE and the magnetic flux densityEB are used as the principle variables. Maxwell’s equations
for the electromagnetic fields in an inhomogeneous volumeÄ are

µ−1 ∂

∂t
EB = −µ−1∇ × EE − µ−1σMµ

−1 EB (2)

ε
∂

∂t
EE = ∇ × µ−1 EB− σE EE (3)

∇ · ε EE = 0 (4)

∇ · EB = 0. (5)

Note that we have assumed zero charge density. The dielectric permittivityε, the magnetic
permeabilityµ, and the conductivitiesσE andσM are assumed to be symmetric positive-
definite tensors, which are functions of position only. The initial conditions and boundary
conditions are given by

EE(t = 0) = EEic, EB(t = 0) = EBic inÄ (6)

En× EE = EEBC on0. (7)

In addition, for the problem to be well-posed we require that the independent magnetic and
electric current sources satisfy

∇ · EM = 0, ∇ · EJ = 0. (8)

The variational form of the above PDE is as follows: findEE ∈ H(curl, t) and EB ∈
H(div, t) such that

∂

∂t
(ε EE, EE∗) = (µ−1∇ × EE∗, EB)− (σE EE, EE∗)− ( EJ, EE∗), (9)

∂

∂t
(µ−1 EB, EB∗) = −(µ−1∇ × EE, EB∗)− (µ−1σMµ

−1 EB, EB∗)− (µ−1 EM, EB∗), (10)

for all EE∗ ∈ H0(curl, t) and EB∗ ∈ H0(div, t). The solution spaces are defined by

H(curl, t) = { Eu(t) : Eu(t) ∈ (L(Ä))3; ∇ × Eu(t) ∈ (L(Ä))3}, (11)

‖ Eu(t)‖H(curl) = (‖ Eu(t)‖2+ ‖∇ × Eu(t)‖2)1/2, (12)
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and

H(div, t) = { Eu(t) : u, Et ∈ (L(Ä))3; ∇ · Eu(t) ∈ (L(Ä))3}, (13)

‖ Eu(t)‖H(div,t) = (‖u, Et‖2+ ‖∇ · Eu(t)‖2)1/2. (14)

The test spaces are defined by

H0(curl, t) = { Eu(t) : Eu(t) ∈ H(curl); n̂× Eu(t) = 0 on0}, (15)

H0(div, t) = { Eu(t) : Eu(t) ∈ H(div); n̂ · Eu(t) = 0 on0}. (16)

This variational form of Maxwell’s equations is a generalization of that proposed in [21] to
include conductivities. Equation (10) can be derived by multiplying (2) by the test function
EB∗ and integrating overÄ. Likewise (9) can be derived by multiplying (3) by the test function
EE∗, integrating overÄ, and employing the identity∇ · (a× b)= b · (∇ ×a)− a · (∇ ×b)
and the divergence theorem. One interpretation of the above variational form is that the
solution must satisfy Poynting’s theorem of energy conservation for every test functionEE∗
and EB∗.

The variational form (9)–(10) is discretized using the hexahedral vector finite elements
defined in [21]. The electric field is approximated as a linear combination of edge elements.

EE =
Ne∑

i=1

αi (t) EWi , (17)

whereNe is the number of edges in the mesh. The electric field given by (17) is a first-
order approximation to the true field when using the norm (12). The basis functionsEW are
conforming with the spaceH(curl). These functions are called edge functions because they
have the property ∫

EWi · t̂ j = δi j , (18)

wheret̂ j is the unit tangent along edgej . Hence the degrees-of-freedomαi are given by

αi =
∫
EE · t̂i (19)

and can be interpreted as the voltage along edgei of the mesh. The magnetic flux density
is approximated as a linear combination of face elements,

EB =
Nf∑
i=1

βi (t) EFi , (20)

whereNf is the number of faces in the mesh. The magnetic flux density given by (20) is
a first-order approximation to the true flux density when using the norm (14). The basis
functionsEB are conforming with the spaceH (div). These functions are called face functions
because they have the property ∫

EBi · n̂ j = δi j , (21)
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wheren̂ j is the unit normal to facej . Hence the degrees-of-freedomβi are given by

βi =
∫
EB · n̂i da (22)

and can be interpreted as the magnetic flux through facei of the mesh.
The edge and face finite elements satisfy the same inclusion relations as their associated

Hilbert spaces. LetV denote the space of linear nodal elements, letW denote the space of
linear edge elements, letF denote the space of linear face elements, and letS denote the
space of piecewise-constant scalar functions. These spaces satisfy

If 8 ∈ V then∇8 ∈ W, (23)

If EE ∈ W then∇ × EE ∈ F, (24)

If EB ∈ F then∇ · EB ∈ S. (25)

These inclusion relations are used in Section 3 below to prove some important properties
of the vector finite element method.

Using the approximations (17) and (20) in the variational form of Maxwell’s equations
yields a coupled system of ordinary differential equations

C
∂

∂t
α(t) = K Tβ(t)−Gα(t)− R j (t), (26)

D
∂

∂t
β(t) = −Kα(t)− Pβ(t)− Dm(t), (27)

where the matrices are given by

Ci j = (ε EWi , EW j ), (28)

K i j = (µ−1∇ × EWi , EF j ), (29)

Gi j = (σE EWi , EW j ), (30)

Ri j = ( EWi , EF j ), (31)

Di j = (µ−1 EFi , EF j ), (32)

Pi j =
(
σM

µ2
EFi , EF j

)
. (33)

The above system of ODEs is integrated in time using the second-order central difference
“leapfrog” method. In this method the electric degrees-of-freedom are known at whole
time steps, and the magnetic degrees-of-freedom are known at the half time steps. Using
superscriptn to denote the time level, we integrate the ODE according to(

C+ 1t

2
G
)
αn+1 = 1tK Tβn+1/2+

(
C− 1t

2
G
)
αn − R j n, (34)(

D+ 1t

2
P
)
βn+1/2 = −1tKαn +

(
D− 1t

2
P
)
βn−1/2−1tDmn+1/2. (35)

This integration requires the solution of large, sparse, linear systems at every time step. In
this study the incomplete Cholesky preconditioned conjugate gradient (ICCG) is used; the
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performance of this method for these particular linear systems is documented elsewhere
[26, 29].

3. ANALYSIS

3.1. Stability and Conservation of Energy

Numerical stability is always an issue when solving PDEs on unstructured grids. Several
proposed finite difference and finite volume methods have been shown to be unconditionally
unstable for distorted hexahedral grids. In this section we show, using matrix stability
analysis, that the vector finite element method described above is conditionally stable.

Consider a closed, source-free region with the boundary conditionn̂× EE= 0 on the
boundary. There is some initial electromagnetic field distribution and these fields are updated
in time according to (34) and (35). For simplicity assume lossless media. The simplified
update equations become

Cαn+1 = 1tK Tβn+1/2+ Cαn, (36)

Dβn+1/2 = −1tKαn + Dβn−1/2. (37)

The matricesC andD are symmetric positive definite and hence have Cholesky decompo-
sitionsC= C̃T C̃ andD= D̃T D̃, respectively. We define new degrees of freedom

α̃ = C̃α (38)

β̃ = D̃β. (39)

The leapfrog update can now be expressed in amplification matrix form as[
α̃n+1

β̃n+1/2

]
=
[
(I −1t2QQT ) 1tQ

−1tQT I

][
α̃n

β̃n−1/2

]
, (40)

where the matrixQ is given by

Q = C̃−TK T D̃−1. (41)

It can be shown [26] that that the stability condition is

1t ≤ 2√
max(ξ)

, (42)

whereξ is the set of eigenvalues of the eigenproblem

QQT z= ξz. (43)

When (42) is satisfied all the eigenvalues of the amplification matrix are unity. In general
this is not sufficient to prove stability but in this case there exists a complete set of linearly
independent eigenvectors and the method is neutrally stable. The denominator

√
max(ξ)

has units of frequency and can be interpreted as the highest frequency that can be supported
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by the grid, and the stability condition is simply that the electromagnetic fields must be
sampled at (or above) the Nyquist rate.

It is straightforward to relate the above stability analysis to conservation of energy. The
integral form of Poynting’s theorem is∮

0

µ−1 EE × EB · n̂ d0 +
∫
Ä

µ−1 EB · EM dÄ+
∫
Ä

EE · EJ dÄ+
∫
Ä

σM

µ
EB · EB dÄ

+
∫
Ä

σE EE · EE dÄ+
∫
Ä

σ1

µ
EB · ∂
∂t
EB dÄ+

∫
Ä

ε EE · ∂
∂t
EE dÄ = 0. (44)

The first term can be expanded as∮
0

µ−1 EE × EB · n̂ d0 =
∫
Ä

µ−1 EB · ∇ × EE dÄ−
∫
Ä

µ−1 EE · ∇ × EB dÄ. (45)

Now, using the degrees-of-freedomα andβ and the matrices defined in (28)–(33), the
discretized version of Poynting’s theorem is

βTKα−αTK Tβ+βTDm+αTR j +βTPβ+αTGα+βTD
∂

∂t
β+αTC

∂

∂t
α = 0. (46)

The combined first two terms represent the net power flow into the domain. The termβTDm
andαTR j represent the power put into the domain by the independent magnetic and electric
current sources, respectively. The termsβTPβ andαTGα represent the power dissipated
due to the magnetic and electric conductivities, respectively, The last two termsβTD ∂

∂t β

andαTC ∂
∂t α represent the time rate of change of stored magnetic and electric energy. For the

simplified situation of no net power flow into the domain, no independent current sources
in the domain, and no lossy media in the domain, the time rate of change of the combined
magnetic and electric energy must be zero. For any stable time step1t we have

(α̃n+1)T α̃n+1+ (β̃n+1/2)T β̃n+1/2 = (α̃n)T α̃n + (β̃n−1/2)T β̃n+1/2, (47)

which is equivalent to

(αn+1)TCαn+1+ (βn+1/2)TDβn+1/2 = (αn)TCαn + (βn−1/2)TDβn−1/2, (48)

and the electromagnetic energy is indeed constant. This is important for electromagnetic
problems that require long time integration intervals.

3.2. Conservation of Magnetic Charge

If the initial magentic flux density is divergence free (zero magnetic charge density
everywhere) and the numerical method conserves magnetic charge, then the flux density
will remain divergence free for all time. Magnetic charge will be conserved if

∇ · ∂
∂t
EB = 0. (49)

everywhere, or alternatively ∮
0

∂

∂t
EB · n̂ d0 = 0, (50)
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where the integral is over any particular hexahedral volume in the grid. In terms of the
degrees-of-freedom this can be expressed as

6∑
i=1

∂

∂t
βi = 0, (51)

since the degrees-of-freedomβi are precisely the net magnetic flux through facei . These
degrees-of-freedom are computed via the magnetic field ODE (27).

Define the subspace

F0 = {Eu ∈ F; ∇ · Eu = 0}. (52)

An important property of the vector finite element spaceW andF is that the operator∇×
is surjective fromW to F0 [21]; the curl of every function inW can be written as a linear
combination of functions inF0. Therefore for any electric field, the magnetic flux density
computed via (27) satisfies (51) exactly. This is analogous to charge conservation with finite
volume methods that place the electric field on mesh edges and the magnetic field on mesh
faces [30, 31].

3.3. Conservation of Electric Charge

The electric field is approximated as a linear combination of edge elements. Since these
elements do not have normal continuity across cell faces, the electric field is not divergence
free in the traditional sense. Rather the electric field is divergence free only in the variational
sense. The variational form of (4) is∫

Ä

8(∇ · ε EE) dÄ = −
∫
Ä

ε EE · ∇8 dÄ+
∮
0

8ε EE · n̂ d0 = 0, (53)

where8 is a continuous piecewise linear function. Since the field is not required to be
divergence free on the boundary0 we can choose8= 0 on0 and the last term in (53) is
zero. Since it can be assumed that the initial electric field satifies (53), the requirement for
electric charge conservation is (

∂

∂t
ε EE,∇8

)
= 0, (54)

for all 8 ∈ H (grad).
Define the subspace

W0 = {Ev ∈ W; ∇ × Ev = 0}. (55)

An important property of the vector finite element spacesW andV is that the operator∇
is surjective fromV to W0, the gradient of every function inV can be written as a linear
combination of functions inW0. Letω be the vector of degrees of freedom of some vector
functionÄ ∈ W0. The null space of the matrixK in (27) isW0, i.e.,Kω= 0 for allÄ ∈ W0.
The discrete version of (54) is then

ωTC
∂

∂t
α(t) = 0 (56)



OPTICAL GRADIENT TRAPS 21

for allÄ ∈ W0. That the above equation is satisfied can be seen by taking the dot product of
an arbitrayω with the electric field ODE (26) (assuming zero conductivity and no current
source), which yields

ωTC
∂

∂t
α(t) = ωTK Tβ(t) = β(t)TKω = 0 (57)

for allÄ ∈ W0. Therefore a variational form of charge conservation is satisfied for all time.
This is true independent of any distortions in the mesh, which is an important property of
the vector finite element method.

4. MODELING THE OPTICAL GRADIENT TRAP

A three-dimensional hexahedral grid is used to model the dielectric object and the sur-
rounding medium. The grid is in the shape of a large sphere, with the dielectric object near
the center of the sphere. An example grid is shown in Fig. 1. The initial electromagnetic
fields in the computational domain are zero. A time varying source is used to launch the
laser beam into the computational domain. This source is designed such that the laser beam
comes to a focus at the center of the grid. The frequency of the laser and the beam cone angle
are user-specified parameters. Since the computational domain is finite, the cross section of
the incicdent beam is also finite. Rather than abrubtly truncating a Gaussian or polynomial
profile, which would introduce artificial high-frequency components, the beam is modeled

FIG. 1. Sample hexahedral grid of a dielectric sphere embedded in a spherical volume.
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TABLE I

Conductivity Values for Maxwellian Absorber

Layer 1 2 3 4 5 6

σ 1.25 5.0 11.25 20.0 31.25 45.0

with a smooth cos2 cross section. The time dependence of the source is given by

E(t) =
(

1− exp

(
− t

2τ

)2
)

sin(ωt). (58)

The parameterτ determines the rise time of the beam, typicallyτ is chosen to be four
periods. The simulation is typically run for twelve periods at a sampling rate of 50 samples
per period. This is enough time for the simulation to reach steady state.

The computational grid is terminated with a Maxwellian absorber in order to simulate an
infinite medium [32, 33]. In this paper a Maxwellian absorber is defined as several layers
of artificial anisotropic media, with the conductivity of the layers graded in such a way as
to reduce reflections from the boundary. This can be interpreted as an impedance matching
device. In a Maxwellian absorber the electric conductivityσE and the magnetic conductivity
σM are equal. In this paper a uniaxial tensor conductivity is employed with the optical axis
normal to the boundary of the computational grid. The conductivity in along the optical
axis is zero, the conductivity normal to this axis is given in Table I. The permittivity and
permeability are those of free space. The choice of a spherical outer boundary simplifies
the implementation of the Maxwellian absorber and results in excellent absorbtion of the
nearly spherical scattered fields. Note that a spherical outer boundary is not required, and
that the method used here does not require an orthogonal or structured grid.

The Maxwellian absorber used in this paper is quite different from the perfectly matched
layer (PML) schemes used in the FDTD community. Although these PML schemes also use
multiple layers with varying conductivity, they result in a modifed split-field PDE which has
been shown to be weakly unstable. Some frequency domain PML schemes use active media
in an attempt to achieve perfect absorbtion, but these schemes also result in instabilities
when applied to temporal electromagnetics. The Maxwellian absorber used here does not
modify the variational form of Maxwell’s equations, nor does it employ active media in
an attempt to achieve perfect matching. When used in a semi-implicit leapfrog update as
in (34) and (35) the Maxwellian absorber is a simple and stable approach for reducing the
scattering from the truncation of the computational grid. The time-dependent source used
to launch the wave into the domain is applied to the grid surface seperating the absorber
from the interior of the domain; this is the outer surface shown in Fig. 1.

Given the electromagnetic fields in the vicinity of the dielectric object the net force on
the object is calculated using the Maxwell stress tensor. The Maxwell stress tensorT̄ is
given by

T̄ = 1

2
( ED · EE + EB · EH) Ī − ( ED EE + EB EH), (59)

whereĪ is the identity tensor. The net force on the dielectric object is then

EF =
∮
0

T̄ · n̂ d0, (60)
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where0 is the surface surrounding the object andn̂ is the unit surface normal. The integral
is computed using a two-dimensional trapezoidal rule. The Maxwell stress tensor is not
continuous across the dielectric discontinuity; in (60) the fields are evaluated on the vaccuum
side of the interface. The basis for this approach is that it gives the correct answer for the
extreme case of scattering by a perfect conductor, which would have zero fields on the
inside surface.

In order for there to be a significant net force, there must be a significant gradient in
the electromagnetic field, hence the terminology optical gradient trap. In electrostatics it is
known that a dielectric body will tend to move toward regions of increasing electric field,
since this reduces the total electrostatic energy of the system. The electrostatic force is
proportional to∇( EE · EE). An optical gradient trap operates analogously, with the exception
that it is an electromagnetic phenomenon rather than an electrostatic one. It is important
to note that the force computed via (60) is time varying, but the inertia of the dielectric
object is such that it cannot possibly respond to the rapidly fluctuating fields. Thus the
optical force that is measured in the laboratory is a time-averaged force. The calculation
of the stress and the net force is straightforward; any error in the force calculation is due
to error in the electromagnetic fields, which is determined by the grid spacing and the
performance of the Maxwellian absorber. Based on previous computational experiments in
which computed electromagnetic fields are compared to analytical results it is estimated
that the electromagnetic fields are correct to within 10% [26] for a grid density of six cells
per wavelength.

4.1. Axial Trapping of Microspheres

A dielectric object can be trapped below the focus spot on the axis of the laser beam. This
is referred to as axial trapping. The geometry of axial trapping is illustrated in Fig. 2. The
electromagnetic energy gradient is toward the focus spot, so there is a possibility that the
dielectric object will be pulled toward the focus. A strong electromagnetic energy gradient
is a necessary, but not sufficient, condition for trapping to occur. The incident laser beam is
both reflected and refracted by the dielectric object, resulting in a back-scattered field and a
forward scattered field. The net force on the dielectric object will be toward the focus spot
only if there is a significant amount of forward scattering. The amount of forward scattering
depends on the size and dielectric constant of the object, the cone angle of the laser beam,

FIG. 2. Geometry of axial trapping experiments.



24 DANIEL A. WHITE

and the position of the object with respect to the focus spot. For axial trapping the force is
independent of the polarization of the laser.

In the following computational experimentsλ= 1.0µm, d= 1.0µm, x= 0.4µm, and
θ = 45◦. The laser rise timeτ was equal to four periods and the fields were sampled 50
times per period, which is well below the time step required for stability. The small time
step is employed for an accurate computation of the time-averaged force on the object. The
fields were updated for twelve periods, or 600 time steps. The simulation was performed
using a variety of dielectric constants in order to determine the effect of dielectric constant
on the optical trapping efficiency. As a reference illustration, Fig. 11 shows a snapshot of
the electric field intensity for the case ofε= 1.0; the dielectric object is invisible for all
intents and purposes. The incident laser beam is propagating in the negativex direction,
with the focus spot at the center of the computation mesh. Figure 12 shows the electric
field intensity for a dielectric constant ofε= 1.2. In Fig. 12 the forward scattered field
is amplified compared to the incident field; hence the momentum in the axial direction is
qualitatively greater than the momentum in the incident beam and there is a net force on
the object toward the focus spot. Since the enhanced forward scattering in Fig. 12 is subtle,
the difference between Figs. 12 and 11 is shown in Fig. 13 with a change in scale.

The scattered field is amplified for only a small range of dielectric constants. Snapshots
of the electric field intensity for dielectric constants ofε= 2.0 andε= 5.0 are shown in
Figs. 14 and 15. In Fig. 14 the forward-scattered field is slightly diminished, and qualitatively
the object will be pushed away from the focus. In Fig. 15 the forward-scattered field is
significantly diminished, the laser beam is essentially reflected by the dielectric sphere, and
conservation of momentum implies that the sphere will again be pushed away from the
focus spot in the negativex direction.

The time-averaged net force on the dielectric sphere was computed via (60) for dielectric
constants ranging from 1.0 to 2.0. The optical trapping efficiencyQ is shown versus dielec-
tric constant in Fig. 3. The dielectric sphere is trapped (positiveQ) for epsilon ranging from

FIG. 3. Computed axial trapping efficiencyQ vs relative dielectric constant. Parametersλ= 1.0µm,
d= 1.0µm, x= 0.4µm, andθ = 45◦.
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FIG. 4. Geometry of transverse trapping experiments.

1.12 to 1.55. Forε <1.1 the dielectric sphere does not refract the fields enough to have a
significant effect on the propagation of the beam, forε >1.55 there is significant back scat-
tering of the beam and the dielectric sphere is pushed away from the focus. The computed
Q values presented here are comparable to the measured results presented in [4]. Note that
in [4] the axial force was measured in water; hence the dielectric constant used in this paper
should be considered relative to the background dielectric. The amorphous silica spheres
used in [4] had a relative dielectric constant of 1.12. For this value ofε we compute aQ of
0.008, compared to a measuredQ of 0.006+/−0.001. Also note that in [4] the dielectric
sphere is free to move and hence the focus spotx is not fixed in the experimental setup.

4.2. Transverse Trapping of Microspheres

A dielectric object can also be trapped transversely, with the object adjacent, the focus
spot rather than below it. The geometry of transverse trapping is illustrated in Fig. 4.

Again, the electromagnetic energy gradient is toward the focus spot, so there is a pos-
sibility that the dielectric object will be pulled toward the focus. The parameters for this
experiment are identical to those for the axial trapping experiment above, except for the
orientation of the laser beam. In addition, this computational experiment is performed for
two different polarizations of the incident laser beam since the geometry is not symmetric.
As a reference illustration, Fig. 16 shows a snapshot of the electric field intensity for a
dielectric constant ofε= 1.0; the dielectric sphere is for all intents and purposes invisible
to the laser beam. The laser beam is propagating in the negativez direction, with the focus
spot again at the center of the computational mesh. The electric field is polarized in the
x direction. Figures 17 and 18 show the electric field intensity for dielectric constants of
ε= 1.2 andε= 2.0, respectively. These figures are snapshots of the field at the same in-
stant of time. Note that the laser beam is refracted toward the left (negativex direction),
opposite of what occurs in an off-center billiard ball collision. Hence, qualitatively, conser-
vation of momentum implies that the dielectric microsphere is pulled toward the focus spot.
Figure 19 shows the electric field intensity for a dielectric constant ofε= 5.0. In this figure
the laser beam is clearly reflected toward the right (positivex direction), and conserva-
tion of momentum implies that the dielectric sphere will be pushed away from the focus
spot.
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FIG. 11. Snapshot of electric field intensity forε= 1.0 microsphere, axial experiment.

FIG. 12. Snapshot of electric field intensity forε= 1.2 microsphere, axial experiment.
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FIG. 13. Difference between theε= 1.2 andε= 1.0 electric fields clearly shows enhanced forward scattering.

FIG. 14. Snapshot of electric field intensity forε= 2.0 microsphere, axial experiment.
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FIG. 5. Computed transverse trapping efficiencyQx vs relative dielectric constant,x polarization. Parameters
λ= 1.0µm, d= 1.0µm, x= 0.4µm, andθ = 45◦.

The time-averaged net force on the dielectric sphere is computed in exactly the same
manner for the transverse experiment as for the axial experiment. The force was computed
via (60) for dielectric constants ranging from 1.0 to 4.0. For the transverse trapping experi-
ments the computed force has bothx andz components, and it is difficult to define a single
trapping efficiencyQ. Instead, we define

Qx = cFx

nP
, Qz = cFz

nP
, (61)

FIG. 6. Computed transverse trapping efficiencyQz vs relative dielectric constant,x polarization. Parameters
λ= 0µm, d= 1.0µm, x= 0.4µm, andθ = 45◦.
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FIG. 7. Computed vector force on the dielectric sphere for the transverse trapping experiment,x polarization.
The left figure is forε= 3.0; the right is forε= 4.0.

whereFx andFz are thex andzcomponents of the force, respectively. TheseQ’s are shown
in Figs. 5 and 6. A positiveQx means that thex component of the force is toward the focus
spot, and Fig. 5 illustrates that the dielectric sphere will be pulled toward the focus for
particular values of the dielectric constant. Comparing to the axial trapping experiment, we
note that the magnitude of the optical forces for the transverse experiment are significantly
greater than that obtained for the axial experiment. This is in qualitative agreement with
the measured results in [4], which report transverse trapping efficiencies of 0.15, compared
to 0.006 for the axial experiment. In addition, the sphere is pulled toward the focus for a
large range of dielectric constant, approximately 1.1<ε <3.7. This phenomenon has not
yet been verified experimentally. It is not clear exactly for what range of dielectric constant
the particle is actually trapped by the laser beam. For example, atε= 3.0, Qx > 0 and the
sphere is pulled toward the axis of the laser beam, butQz< 0 and the sphere is pushed
away from the focus spot. On the other hand, atε= 4.0 bothQx < 0 andQz< 0, and the
sphere is clearly not trapped. These forces are illustrated graphically in Fig. 7 forε= 3.0
andε= 4.0. The optical scattering changes character at approximatelyε= 3.7.

FIG. 8. Computed transverse trapping efficiencyQx vs relative dielectric constant,y polarization. Parameters
λ= 1.0µm, d= 1.0µm, x= 0.4µm, andθ = 45◦.
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FIG. 15. Snapshot of electric field intensity forε= 5.0 microsphere, axial experiment.

FIG. 16. Snapshot of electric field intensity forε= 1.0 microsphere, transverse experiment,x polarization.
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FIG. 17. Snapshot of electric field intensity forε= 1.2 microsphere, transverse experiment,x polarization.

FIG. 18. Snapshot of electric field intensity forε= 2.0 microsphere, transverse experiment,x polarization.
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FIG. 9. Computed transverse trapping efficiencyQz vs relative dielectric constant,y polarization. Parameters
λ= 1.0µm, d= 1.0µm, x= 0.4µm, andθ = 45◦.

The above transverse trapping experiment was repeated for the case of electric field polar-
ized in they direction. Snapshots of the electric field intensity are shown in Figs. 20, 21, and
22 corresponding to dielectric constants of 1.2, 2.0, and 10.0, respectively. Forε= 1.2 and
ε= 2.0 the scattered field is quite similar to that obtained for thex polarization experiment;
again the laser beam is refracted toward the left (negativex direction), opposite of what oc-
curs in an off-center billiard ball collison. However, the scattering did not change character
as the dielectric constant increased as it did for thex polarization experiment. The laser
beam was refracted more and more asε increased. This difference between thex andy po-
larization experiments is analogous to plane–plane wave refraction at a dielectric interface,
where one polarization exhibits a change of character at a critical value of dielectric constant
(brewster angle for transverse electric polarization) and the other polarization does not.

FIG. 10. Computed vector force on the dielectric sphere for the transverse trapping experiment,x polarization.
The left figure is forε= 3.0; the right is forε= 4.0.
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The time-averaged net force on the dielectric sphere is again computed for a range of
dielectric constants from 1.0 to 4.0. Thex- andz-directed forces are converted toQ’s via
(61), and theseQ’s are shown in Figs. 8 and 9. Thezcomponent ofQ is quite similar to that
obtained for thex polarization experiment; it is negative for all values of dielectric constant.
Thex component ofQ differs from that obtained for thex polarization experiment in that
it remains positive for all values of dielectric constant. This means that the sphere is always
pulled toward the axis of the beam. Again, it is not clear exactly for what range of dielectric
constant the sphere is actually trapped by the beam. The vector optical force is illustrated
graphically in Fig. 10 forε= 3.0 andε= 4.0 and shows that the optical scattering does
not have an abrupt change of character. However, thez component of the force becomes
dominant and it will ultimately be pushed away from the focus spot as the dielectric constant
increases.

5. SUMMARY

An unstructured-grid vector finite element is used for the numerical modeling of optical
gradient traps. The method uses edge vector finite elements as a basis for the electric field
and face vector finite elements as a basis for the magnetic flux density. This choice of ba-
sis functions allows for the proper modeling of continuity (discontinuity) of the tangential
(normal) components of the electric field across material discontinuities. In addition, this
choice of basis functions prevents spurious irrotational fields from polluting the solution.
The method allows for tensor permeability, permittivity, and electric and magnetic con-
ductivities. Thus it is a simple matter to implement a Maxwellian absorber to attenuate
outgoing electromagnetic waves. A second-order central-difference method is used to ad-
vance the fields and fluxes in a leapfrog manner. The method is shown to be stable and
energy conserving, assuming the time step is chosen according to a Nyquist condition.

A 3D unstructured hexahedral grid is used to model the dielectric object and the sur-
rounding space. A laser beam is launched into the computational grid by a time varying
source. As the electromagnetic fields are evolved, the net force on the dielectric object
is computed by integrating the Maxwell stress tensor over the surface of the object. The
net force is a function of time, but since the dielectric object cannot possibly respond to
optical frequencies the time-averaged force is computed. The computed optical trapping
efficiencies are computed for both axial and transverse trapping geometries for a 1-µm
sphere, using a range of dielectric constants. A simple sphere is used so that the computed
results can be compared to previously measured data. The comparison is quite favorable
considering the differences between the computational experiment (object location is fixed
with respect to the beam) and the physical experiment (object is free to move in response
to the beam).

Optical trapping efficiencies of up toQ= 0.05 were obtained for a relative dielectric
constant ofε= 1.4 for the axial trapping experiment. We show that the object is trapped only
when 1.1<ε <1.55. By examining the electric fields it is clear that the forward scattering
is enhanced for this range of dielectric constant. Forε <1.1 it appears that the sphere is not
refractive enough to scatter the beam, whereas forε >1.55 the beam is essentially reflected
from the object, pushing the object away from the focus. The amorphous silica spheres used
in the measurements [4] had a relative dielectric constant of 1.12. For this value ofε, we
compute aQ of 0.008, compared to a measuredQ of 0.006+/−0.001.
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FIG. 19. Snapshot of electric field intensity forε= 5.0 microsphere, transverse experiment,x polarization.

FIG. 20. Snapshot of electric field intensity forε= 1.2 microsphere, transverse experiment,y polarization.
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FIG. 21. Snapshot of electric field intensity forε= 2.0 microsphere, transverse experiment,y polarization.

FIG. 22. Snapshot of electric field intensity forε= 5.0 microsphere, transverse experiment,y polarization.
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The simulations of the transverse trapping experiments were quite interesting. We show
that the scattered field is refracted such that the electromagnetic momentum behaves op-
posite of what occurs in an off-center billiard ball collision. With simple conservation of
momentum arguments, this explains how the dielectric object is pulled toward the focus
spot. However, this effect was polarization dependent. For thex polarization the laser beam
is refracted only for particular values of dielectric constant. When the dielectric constant
was increased beyond a critical value ofε= 3.7 the beam was reflected from the object. This
phenomenon was qualitatively visible in the field intensity plots and quantitatively visible
as a change in sign of the net optical force on the object. They-polarized laser beam, on the
other hand, was refracted more and more as the dielectric constant was increased. For both
polarizations, the optical trapping force was significantly greater that the transverse trapping
force, which is in agreement with the measured results in [4]. However, for the transverse
trapping experiments we had difficulty defining a single optical trapping efficiencyQ, since
the optical force had components in both thex andz directions. IfQx < 0 it is clear that the
object is pushed away from the focus spot. It is not clear what happens whenQx > 0 and
Qz< 0. To resolve this issue it is necessary to have the sphere actually move in response
to the laser beam, but this represents a significant effort and was beyond the goals of this
project.

REFERENCES

1. A. Ashkin, Acceleration and trapping of particles by radiation pressure,Phys. Rev. Lett.24, 156 (1970).

2. A. Ashkin and J. M. Dziedzic, Optical levitation by radiation pressure,Appl. Phys. Lett.19, 283
(1971).

3. A. Ashkin, J. M. Dziedzic, E. J. Bjorkholm, and S. Chu, Observation of a single-beam gradient optical trap
for dielectric particles,Opt. Lett.11, 288 (1986).

4. W. H. Wright, G. J. Sonek, and M. W. Berns, Parametric study of the force on microspheres help by optical
tweezers,Appl. Opt.33, 1753 (1994).

5. C. D’Helon, E. W. Dearden, H. Rubenstein-Dunlop, and N. R. Heckenberg, Measurement of the optical force
and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,J. Mod. Opt.41, 595
(1994).

6. R. Omori, T. Kobayashi, and A. Suzuki, Observation of a single-beam gradient force optical trap for dielectric
particles in air,Opt. Lett.22, 816 (1997).

7. T. N. Buican, M. J. Smith, H. A. Crissman, G. C. Salzman, C. C. stewart, and J. C. Martin, Automated
single-cell manipulation and sorting by light trapping,Appl. Opt.26, 5311 (1987).

8. A. Ashkin, J. M. Dziedzic, and T. M. Yamane, Optical trapping and manipulation of single cells using infrared
laser beams,Nature330, 769 (1987).

9. Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, and M. W. Berns, Micromanipulation of sperm by a laser
generated optical trap,Fert. Ster.57, 870 (1989).

10. A. Ashkin and J. M. Dziedzic, Optical trapping and manipulation of viruses abd bacteria,Science235, 1517
(1987).

11. S. M. Block, D. F. Blair, and H. C. Berg, Compliance of bacterial polyhooks measured with optical tweezers,
Cytometry12, 492 (1991).

12. A. Ashkin, K. Schultze, J. M. Dziedzic, U. Euteneur, and M. Schliwa, Force generation of organelle transport
measuredin vivoby an infrared laser trap,Nature348, 346 (1990).

13. S. C. Kuo and M. P. Sheetz, Force of single kinesin molecules measured with optical tweezers,Science260,
232 (1993).

14. S. Block, L. S. B. Goldstein, and B. J. Schnapp, Using optical tweezers to investigate kinesin-based motility
in vitro, J. Cell Bio.109, 81a (1989).



OPTICAL GRADIENT TRAPS 37

15. A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,Bio. J.
61, 569 (1992).

16. R. C. Gauthier and S. Wallace, Optical levitation of spheres: analytical development and numerical computa-
tions of the force equations,J. Opt. Soc. Am. B12 (1995).

17. R. C. Gauthier, Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,
J. Opt. Soc. Am. B14 (1997).

18. J. P. Barton, D. R. Alexander, and S. A. Schaub, Internal and near-surface electromagnetic fields for a spherical
particle irradiated by a focused laser beam,J. Appl. Phys.64, 1632 (1988).

19. J. P. Barton, D. R. Alexander, and S. A. Schaub, Theoretical determination of net radiation force and torge
for a spherical particle illuminated by a focused laser beam,J. Appl. Phys.66, 4594 (1989).

20. J. P. Barton and D. R. Alexander, Fifth-order corrected electromagnetic field components for a fundamental
Gaussian beam,J. Appl. Phys.66, 2800 (1989).

21. Nedelec, J. C., Mixed finite elements in R3,Numer. Math.35, 315 (1980).

22. P. Monk, A. comparison of three mixed methods for the time-dependent Maxwell’s equations,SIAM J. Sci.
Stat. Comput.13, 1097 (1992).

23. P. Monk, An analysis of Nedelec’s method for the spatial discretization of Maxwell’s equations,J. Comput.
Appl. Math.47, 101 (1993).

24. P. Monk and A. Parrot, A dispersion analysis of finite element methods for Maxwell’s equations,SIAM J. Sci.
Comput.15, 916 (1994).

25. G. Warren and W. Scott, An investigation of numerical dispersion in the vector finite element method using
quadrilateral elements,IEEE Trans. Ant. Prop.42, 1502 (1994).

26. D. White,Discrete Time Vector Finite Element Methods for Solving Maxwell’s Equations on 3D Unstructured
Grids, Ph.D. dissertation, University of California at Davis, 1997.

27. Z. Cendes, Vector finite elements for electromagnetic field calculations,IEEE Trans. Mag.27, 3958 (1991).

28. D. Sun, J. Magnes, X. Yuan, and Z. Cendes, Spurious modes in finite element methods,IEEE Ant. Prop. Mag.
37, 12 (1995).

29. D. A. White, Solution of capacitance systems using incomplete Cholesky fixed point iteration, submitted for
publication.

30. C. R. Evans and J. F. Hawley, Simulation of magnetohydrodynamic flows: A constrained transport method,
Astrophys. J.332, 659 (1988).

31. N. K. Madsen, Divergence preserving discrete surface integral methods for Maxwell’s equations using non-
orthogonal unstructured grids,J. Comput. Phys.119, 34 (1995).

32. R. W. Ziolkowski, The design of maxwellian absorbers for numerical boundary conditions and for practical
applications using engineered artificial materials,IEEE Trans. Ant. Prop.45, 656.

33. Z. Sachs, D. Kingsland, R. Lee, and J. Lee, A perfectly matched anisotropic absorber for use as an absorbing
boundary condition,IEEE Trans. Ant. Prop.43, 1460.


	1. INTRODUCTION
	2. VECTOR FINITE ELEMENT METHOD
	3. ANALYSIS
	4. MODELING THE OPTICAL GRADIENT TRAP
	FIG. 1.
	TABLE I
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	FIG. 20.
	FIG. 21.
	FIG. 22.

	5. SUMMARY
	REFERENCES

