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It has been established that under certain conditions microscopic dielectric objects
can be trapped by a tightly focused laser beam. This phenomenon is commonly
referred to as an optical gradient trap. The recently developed vector finite element
method is used to visualize the interaction of the laser beam with the dielectric object
and to quantitatively predict the optical trapping efficiency. The vector finite element
method is an accurate and efficient approach when the incident beam wavelength is
comparable to the object size, and it has the advantage that it can be used to model
the trapping of arbitrarily shaped 3D objectsg 2000 Academic Press

1. INTRODUCTION

It is well known that light waves have momentum and that this momentum can
transfered to a solid object. This is often referred to as radiation pressure. It was
demonstrated in 1970 that the force of radiation pressure could accelerate a microm
sized polystyrene sphere [1]. Later it was demonstrated that the sphere could be levitat:
balancing the force of radiation pressure against the force of gravity [2]. In these experim
it was observed that the force was predominately in the direction of power flow, with a sli
transverse force toward the center of the beam. In 1986 it was shown experimentally
a microscopic dielectric object could be trapped by a tightly focused laser beam [3]. T
is referred to as a single-beam optical gradient trap, or “optical tweezers.” The opt
trapping force has been measured for dielectric spheres under a variety of conditions [
The trapping force depends on many factors including the size and dielectric constant ¢
object, the wavelength and polarization of the laser beam, and the position of the object
respect to the beam focus spot. The predominate application of optical traps is microbiol
where optical traps have been used for the manipulation of cells [7—9] and the manipule

1 This work was supported in part by the U.S. Department of Energy under Grant W-7405-Eng-48.
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14 DANIEL A. WHITE

of viruses and bacteria [10, 11]. As another biological application, a properly calibra
optical trap can be used to measure minute biological forces [12—14] within living cells

Several different approaches for the theoretical modeling of optical gradient traps
been investigated. In the geometrical optics (GO) approach the incident laser beal
modeled by a collection of independent light rays [15-17]. These rays intersect the sur
of the dielectric object and are refracted/reflected according to the classic Fresnel forn
In practice each ray is traced for only a few reflections. Each ray carries momentum,
this momentum changes direction as the ray is refracted and reflected. The net force o
dielectric object is then computed by summing the contribution of momentum transfer fr
each individual ray. Since the force is proportional to the incident power it is common
introduce the optical trapping efficiency

cF
Q—n—,

5 (1)

whereF is a component of the forcd is the powerg is the speed of light, and is the
index of refraction. By convention the object is trappe@if 0. GO modeling predicts that
dielectric objects will be trapped only for particular valuesofFor example, GO modeling
predicts that reflecting spheres and dielectric spheresnwithh will be pushed away from
the beam focus spot, rather than being trapped, which is in agreement with experime
data. In addition GO modeling predicts that extreme beam cone angles are require
trapping to occur, which is also in agreement with experiment. However, the GO mo
is an asymptotic approximation and hence the prediQeabrees with measured values
only for large spheres. This is a significant disadvantage of the GO model, since for n
applications the object size is comparable to the incident beam wavelength.

Several researchers have proposed modeling optical gradient traps using a finite s
approximate solution of Maxwell’s equations [4, 18, 19]. This approach yields accur
full-wave electromagnetic fields within, and on the surface of, the dielectric sphere. T
primary difficulty with this approach is modeling the incident laser beam; however, fail
accurate approximations of Gaussian beams have been developed [20]. Given the ap
imate electromagnetic field on the surface of the sphere, the optical trapping force ca
computed by integrating the dot product of the surface outward normal with the Maxw
stress tensor over the surface of the sphere. Optical trapping efficiencies computed ir
manner correlate well with measured values. The disadvantage of this approach is tha
only valid for spheres or other simple shapes that admit to a series solution of Maxwe
equations.

In this paper, a vector finite element method is used to model an optical gradient t
The method solves Maxwell’s equations on an unstructured three-dimensional grid u:
edge vector finite elements as a basis for the electric field and face vector finite elem
for the magnetic flux density. The method described in this paper is a generalizatiot
that originally proposed in [21]. The convergence of the method has been theoretic
analyzed by several researchers [22—-25], and computational efficiency of the methoc
been investigated [26]. There are several advantages of the vector finite element comy
to other grid-based methods such as nodal finite element, finite volume, and finite differe
methods. First, the method accurately models the discontinuity of the electric field aci
material interfaces, which is particularly important for modeling optical gradient trag
Second, the method is provably stable and energy conserving even for highly disto
grids. Third, the method accurately models the divergence (or lack thereof) of fields
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fluxes. The accurate modeling of the divergence is related to the problem of spurious m
[27, 28], which often plague traditional nodal finite element methods. Since there are se\
different variants of the vector finite element method, the method used in this study wil
derived below. The procedure for modeling an optical gradient trap is described in de
and predicted trapping efficiencies for microspheres are compared to measured vé
The computed trapping efficiencies compare well (withing the measured error boun
confirming the utility of the vector finite element method for optical force calculations.

2. VECTOR FINITE ELEMENT METHOD

There are a variety of ways to express Maxwell's equations; in this paper the electric f
E and the magnetic flux densify are used as the principle variables. Maxwell's equatior
for the electromagnetic fields in an inhomogeneous volthaee

9 - - -
lflaB =—n'VxE-plouu'B @)
3 - B, R
E§E=VXM*13—UEE ©))
V.¢cE=0 (4)
vV.-B=0. (5)

Note that we have assumed zero charge density. The dielectric permétitlily magnetic
permeabilityu, and the conductivitiesg andoy are assumed to be symmetric positive:
definite tensors, which are functions of position only. The initial conditions and bound:
conditions are given by

-

Et=0)=E, Bt=0) =B, inQ (6)

X é = EBC onl. (7)

=1

In addition, for the problem to be well-posed we require that the independent magnetic
electric current sources satisfy

V.M=0, V.-J=0. (8)

The variational form of the above PDE is as follows: fifde H(curl, t) and B e
H (div, t) such that

3 - g =3 — - — - —
S{€E B = (1 'V x E*, B) — (0eE, E) — (J, E"), 9)
a g g - - — - - —
E(WB, B*) = —(u 'V x E, B*) — (u lompn B, B*) — (1M, B¥), (10)
for all E* € Ho(curl, t) andB* € Ho(div, t). The solution spaces are defined by

H(curl, t) = {u(t) : ut) e (L)% V x u(t) e (L(Q)3, (11)
U 1 eun = (UD 2 + IV x u®) 32, (12)
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and
H(div, t) = {ut) : u,T e (L(Q)3 V- u) e (L(Q)3), (13)
IU® v = (U, T2+ 1V - u) 22, (14)

The test spaces are defined by

Ho(curl, t) = {uft) : uft) € H(curl); h x u(t) =0onTl}, (15)
Ho(div, t) = {u(t) : u(t) € H(div); - ut) = 0 onT'}. (16)

This variational form of Maxwell’s equations is a generalization of that proposed in [21]
include conductivities. Equation (10) can be derived by multiplying (2) by the test functi
B*and integrating ove®. Likewise (9) can be derived by multiplying (3) by the test functior
E*, integrating over?, and employing the identity - (ax b)=b-(V xa) —a- (V xb)
and the divergence theorem. One interpretation of the above variational form is that
solution must satisfy Poynting’s theorem of energy conservation for every test fulction
andB*.

The variational form (9)—(10) is discretized using the hexahedral vector finite eleme
defined in [21]. The electric field is approximated as a linear combination of edge eleme

Ne
E=) ai®hW, (17)
i=1

where Ng is the number of edges in the mesh. The electric field given by (17) is a fir
order approximation to the true field when using the norm (12). The basis funticars
conforming with the spack (curl). These functions are called edge functions because th
have the property

/Wi -t =&, (18)
wheref; is the unit tangent along edge Hence the degrees-of-freedamare given by
o = / E.f (19)

and can be interpreted as the voltage along edfehe mesh. The magnetic flux density
is approximated as a linear combination of face elements,

N
B=) AWMF, (20)
i=1

whereN; is the number of faces in the mesh. The magnetic flux density given by (20
a first-order approximation to the true flux density when using the norm (14). The be
functionsB are conforming with the spadt (div). These functions are called face functions
because they have the property

JEREE (21)
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wheref; is the unit normal to facg. Hence the degrees-of-freedgnare given by

ﬁiz/é-ﬁida (22)

and can be interpreted as the magnetic flux throughifa¢¢he mesh.

The edge and face finite elements satisfy the same inclusion relations as their assoc
Hilbert spaces. Le¥ denote the space of linear nodal elementsWedenote the space of
linear edge elements, I€ denote the space of linear face elements, an& Egnote the
space of piecewise-constant scalar functions. These spaces satisfy

fd eV thenvd e W, (23)
IfEeW thenV x E € F, (24)
fBeF thenv-BeS (25)

These inclusion relations are used in Section 3 below to prove some important prope
of the vector finite element method.

Using the approximations (17) and (20) in the variational form of Maxwell’'s equatio
yields a coupled system of ordinary differential equations

C%am — KTB(t) — Ga(t) — Rj (1), (26)
D2 A1) = —Ka(t) ~ PA®) ~ D), (27)

where the matrices are given by

Cij = (eW;, W), (28)
Kij = (u™'V x Wi, F)), (29)
Gij = (oeW;, W)), (30)
Rij = (W, Fj), (31)
Dij = (u 'Fi. F)). (32)
P = (‘;—“gﬁi, ﬁ,»). (33)

The above system of ODEs is integrated in time using the second-order central differ:
“leapfrog” method. In this method the electric degrees-of-freedom are known at wh
time steps, and the magnetic degrees-of-freedom are known at the half time steps. L
superscriph to denote the time level, we integrate the ODE according to

At At .

<c + ZG) oMt = AtKTgMHY2 <c — ZG) a" —Rj", (34)
At At

(D + 7P) B2 = —_AtKa" + (D — 7P) Y2 — AtDm™Y2. (35)

This integration requires the solution of large, sparse, linear systems at every time ste
this study the incomplete Cholesky preconditioned conjugate gradient (ICCG) is used.
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performance of this method for these particular linear systems is documented elsew
[26, 29].

3. ANALYSIS

3.1. Stability and Conservation of Energy

Numerical stability is always an issue when solving PDEs on unstructured grids. Sev
proposed finite difference and finite volume methods have been shown to be unconditior
unstable for distorted hexahedral grids. In this section we show, using matrix stabi
analysis, that the vector finite element method described above is conditionally stable.

Consider a closed, source-free region with the boundary conditierE =0 on the
boundary. There is some initial electromagnetic field distribution and these fields are upd
in time according to (34) and (35). For simplicity assume lossless media. The simplif
update equations become

Ca™? = AtKTgMY2 1 Ca", (36)
DA"? = —AtKa" + D" Y2, (37)

The matrice<C andD are symmetric positive definite and hence have Cholesky decomj
sitionsC = C'"C andD = D' D, respectively. We define new degrees of freedom

Q
Il
O

o (38)
B. (39)

=™
1
O

The leapfrog update can now be expressed in amplification matrix form as

~n+1 _ At2007T ~n
[Boiwl/z] = [(I _ittQQTQ : A:Q [Br:xl/zl ’ (40)
where the matribxQ is given by

Q=C K™D (41)

It can be shown [26] that that the stability condition is
At < # (42)

vmax®)

whereé is the set of eigenvalues of the eigenproblem

QQ"z=¢z (43)

When (42) is satisfied all the eigenvalues of the amplification matrix are unity. In gene
this is not sufficient to prove stability but in this case there exists a complete set of line:
independent eigenvectors and the method is neutrally stable. The denomjfmaocs)

has units of frequency and can be interpreted as the highest frequency that can be supy
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by the grid, and the stability condition is simply that the electromagnetic fields must
sampled at (or above) the Nyquist rate.

It is straightforward to relate the above stability analysis to conservation of energy. -
integral form of Poynting’s theorem is

?{/fléxé ﬁdF+/ -1B. MdQ+/E JdQ+/—B B dQ
r Q
+/aE|§ EdQ+/ —BdQ—f—/ E.-2Edn—o (44)
o o ot

The first term can be expanded as

%M_léxé'ﬁdl—‘z/pflé~VXEdQ—/,U,_lE'VXédQ. (45)
r Q Q

Now, using the degrees-of-freedamand 8 and the matrices defined in (28)—(33), the
discretized version of Poynting's theorem is

3 3
BTKa —a'KtB+ B Dm+a'R; +ﬁTPﬁ+aTGa+ﬂTDaﬂ +aTC§a =0. (46)

The combined first two terms represent the net power flow into the domain. Thg t@m
andaTRj represent the power put into the domain by the independent magnetic and ele
current sources, respectively. The terlPg anda’ Ga represent the power dissipated
due to the magnetic and electric conductivities, respectively, The last two ﬁérrm% B
andaTC%a represent the time rate of change of stored magnetic and electric energy. Fo
simplified situation of no net power flow into the domain, no independent current sour
in the domain, and no lossy media in the domain, the time rate of change of the comb
magnetic and electric energy must be zero. For any stable time\steje have

( n+l)T n+1+(ﬁn+l/2) ’3n+1/2 ((xn)T n+(ﬁn 1/2) IBH+1/2 (47)
which is equivalent to
( n+1) Can+l+(ﬁn+l/2) D’3n+l/2 (an)TCa +(ﬁn 1/2)TD/3n 1/2 (48)

and the electromagnetic energy is indeed constant. This is important for electromag
problems that require long time integration intervals.

3.2. Conservation of Magnetic Charge

If the initial magentic flux density is divergence free (zero magnetic charge dens
everywhere) and the numerical method conserves magnetic charge, then the flux de
will remain divergence free for all time. Magnetic charge will be conserved if

é 0. (49)

QJ|Q_3

everywhere, or alternatively

dr =0, (50)

S~

2| w
o)
>
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where the integral is over any particular hexahedral volume in the grid. In terms of
degrees-of-freedom this can be expressed as

°
> =B =0, (51)
c— 9t
i=1
since the degrees-of-freedgsnare precisely the net magnetic flux through fac&hese
degrees-of-freedom are computed via the magnetic field ODE (27).

Define the subspace
Fo={lie F;V.li=0. (52)

An important property of the vector finite element sp¢eandF is that the operatoV x

is surjective fromW to Fq [21]; the curl of every function ilW can be written as a linear
combination of functions . Therefore for any electric field, the magnetic flux density
computed via (27) satisfies (51) exactly. This is analogous to charge conservation with fi
volume methods that place the electric field on mesh edges and the magnetic field on |
faces [30, 31].

3.3. Conservation of Electric Charge

The electric field is approximated as a linear combination of edge elements. Since tl
elements do not have normal continuity across cell faces, the electric field is not diverge
free in the traditional sense. Rather the electric field is divergence free only in the variatic
sense. The variational form of (4) is

/cp(v.eé)dsz:—/eé.vq>dsz+]{q>eé.ﬁdr=o, (53)
JQ Q r

where ® is a continuous piecewise linear function. Since the field is not required to
divergence free on the bounddrywe can choos® =0 onT" and the last term in (53) is
zero. Since it can be assumed that the initial electric field satifies (53), the requiremen
electric charge conservation is

(LE, vq>> =0, (54)
at
for all ® € H (grad).
Define the subspace
Wo={v € W;V x v =0J. (55)

An important property of the vector finite element spadéandV is that the operatov

is surjective fromV to Wy, the gradient of every function i can be written as a linear
combination of functions iW. Let w be the vector of degrees of freedom of some vectc
function2 € Wyp. The null space of the matriX in (27) isWp, i.e.,Kw =0 for all 2 € Wh.
The discrete version of (54) is then

a)TC%a(t) =0 (56)
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for all @ € Wy. That the above equation is satisfied can be seen by taking the dot produt
an arbitrayw with the electric field ODE (26) (assuming zero conductivity and no curre
source), which yields

a)TC%a(t) = KTB(1t) =B(1t) ' Ko=0 (57)

for all @ € Wy. Therefore a variational form of charge conservation is satisfied for all tim
This is true independent of any distortions in the mesh, which is an important propert
the vector finite element method.

4. MODELING THE OPTICAL GRADIENT TRAP

A three-dimensional hexahedral grid is used to model the dielectric object and the
rounding medium. The grid is in the shape of a large sphere, with the dielectric object r
the center of the sphere. An example grid is shown in Fig. 1. The initial electromagn
fields in the computational domain are zero. A time varying source is used to launch
laser beam into the computational domain. This source is designed such that the laser
comes to a focus at the center of the grid. The frequency of the laser and the beam cone
are user-specified parameters. Since the computational domain is finite, the cross sect
the incicdent beam is also finite. Rather than abrubtly truncating a Gaussian or polyno
profile, which would introduce artificial high-frequency components, the beam is mode
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FIG. 1. Sample hexahedral grid of a dielectric sphere embedded in a spherical volume.



22 DANIEL A. WHITE

TABLE |
Conductivity Values for Maxwellian Absorber

Layer 1 2 3 4 5 6

o 125 50 11.25 200 3125 450

with a smooth cdscross section. The time dependence of the source is given by

2
E(t) = <1 — exp<—2tr> ) sin(wt). (58)

The parametet determines the rise time of the beam, typicallys chosen to be four
periods. The simulation is typically run for twelve periods at a sampling rate of 50 samg
per period. This is enough time for the simulation to reach steady state.

The computational grid is terminated with a Maxwellian absorber in order to simulate
infinite medium [32, 33]. In this paper a Maxwellian absorber is defined as several lay
of artificial anisotropic media, with the conductivity of the layers graded in such a way
to reduce reflections from the boundary. This can be interpreted as an impedance mat
device. In a Maxwellian absorber the electric conductiwifyand the magnetic conductivity
owm are equal. In this paper a uniaxial tensor conductivity is employed with the optical a
normal to the boundary of the computational grid. The conductivity in along the optic
axis is zero, the conductivity normal to this axis is given in Table |. The permittivity ar
permeability are those of free space. The choice of a spherical outer boundary simpl
the implementation of the Maxwellian absorber and results in excellent absorbtion of
nearly spherical scattered fields. Note that a spherical outer boundary is not required,
that the method used here does not require an orthogonal or structured grid.

The Maxwellian absorber used in this paper is quite different from the perfectly matct
layer (PML) schemes used in the FDTD community. Although these PML schemes also
multiple layers with varying conductivity, they result in a modifed split-field PDE which he
been shown to be weakly unstable. Some frequency domain PML schemes use active r
in an attempt to achieve perfect absorbtion, but these schemes also result in instabi
when applied to temporal electromagnetics. The Maxwellian absorber used here doe
modify the variational form of Maxwell's equations, nor does it employ active media
an attempt to achieve perfect matching. When used in a semi-implicit leapfrog updat
in (34) and (35) the Maxwellian absorber is a simple and stable approach for reducing
scattering from the truncation of the computational grid. The time-dependent source
to launch the wave into the domain is applied to the grid surface seperating the absc
from the interior of the domain; this is the outer surface shown in Fig. 1.

Given the electromagnetic fields in the vicinity of the dielectric object the net force «
the object is calculated using the Maxwell stress tensor. The Maxwell stress ersor
given by

T=2(D -E+B-H)I —(DE+BH), (59)

ﬁsz.ﬁdr, (60)
r
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whererl is the surface surrounding the object d@nid the unit surface normal. The integral
is computed using a two-dimensional trapezoidal rule. The Maxwell stress tensor is
continuous across the dielectric discontinuity; in (60) the fields are evaluated on the vacc
side of the interface. The basis for this approach is that it gives the correct answer fol
extreme case of scattering by a perfect conductor, which would have zero fields on
inside surface.

In order for there to be a significant net force, there must be a significant gradien
the electromagnetic field, hence the terminology optical gradient trap. In electrostatics
known that a dielectric body will tend to move toward regions of increasing electric fie
since this reduces the total electrostatic energy of the system. The electrostatic for
proportional tov(E - E). An optical gradient trap operates analogously, with the exceptit
that it is an electromagnetic phenomenon rather than an electrostatic one. It is impo
to note that the force computed via (60) is time varying, but the inertia of the dielect
object is such that it cannot possibly respond to the rapidly fluctuating fields. Thus
optical force that is measured in the laboratory is a time-averaged force. The calcule
of the stress and the net force is straightforward; any error in the force calculation is
to error in the electromagnetic fields, which is determined by the grid spacing and
performance of the Maxwellian absorber. Based on previous computational experimen
which computed electromagnetic fields are compared to analytical results it is estim
that the electromagnetic fields are correct to within 10% [26] for a grid density of six ce
per wavelength.

4.1. Axial Trapping of Microspheres

A dielectric object can be trapped below the focus spot on the axis of the laser beam.
is referred to as axial trapping. The geometry of axial trapping is illustrated in Fig. 2. T
electromagnetic energy gradient is toward the focus spot, so there is a possibility tha
dielectric object will be pulled toward the focus. A strong electromagnetic energy gradi
is a necessary, but not sufficient, condition for trapping to occur. The incident laser bea
both reflected and refracted by the dielectric object, resulting in a back-scattered field &
forward scattered field. The net force on the dielectric object will be toward the focus s
only if there is a significant amount of forward scattering. The amount of forward scatter
depends on the size and dielectric constant of the object, the cone angle of the laser |

A

Z axis

FIG. 2. Geometry of axial trapping experiments.
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and the position of the object with respect to the focus spot. For axial trapping the forc
independent of the polarization of the laser.

In the following computational experiments=1.0um, d =21.0um, X =0.4 um, and
0 =45. The laser rise time was equal to four periods and the fields were sampled &
times per period, which is well below the time step required for stability. The small tin
step is employed for an accurate computation of the time-averaged force on the object.
fields were updated for twelve periods, or 600 time steps. The simulation was perforr
using a variety of dielectric constants in order to determine the effect of dielectric const
on the optical trapping efficiency. As a reference illustration, Fig. 11 shows a snapshc
the electric field intensity for the case of= 1.0; the dielectric object is invisible for all
intents and purposes. The incident laser beam is propagating in the negdirestion,
with the focus spot at the center of the computation mesh. Figure 12 shows the ele
field intensity for a dielectric constant ef=1.2. In Fig. 12 the forward scattered field
is amplified compared to the incident field; hence the momentum in the axial directior
gualitatively greater than the momentum in the incident beam and there is a net forc
the object toward the focus spot. Since the enhanced forward scattering in Fig. 12 is su
the difference between Figs. 12 and 11 is shown in Fig. 13 with a change in scale.

The scattered field is amplified for only a small range of dielectric constants. Snapsi!
of the electric field intensity for dielectric constantsect 2.0 ande = 5.0 are shown in
Figs. 14 and 15. InFig. 14 the forward-scattered field is slightly diminished, and qualitativ
the object will be pushed away from the focus. In Fig. 15 the forward-scattered fielc
significantly diminished, the laser beam is essentially reflected by the dielectric sphere,
conservation of momentum implies that the sphere will again be pushed away from
focus spot in the negativedirection.

The time-averaged net force on the dielectric sphere was computed via (60) for diele
constants ranging from 1.0 to 2.0. The optical trapping efficig@éy shown versus dielec-
tric constant in Fig. 3. The dielectric sphere is trapped (pos@iyéor epsilon ranging from

® ®
0.04} ° °
0.02}
c Ore
°
-0.02}
-0.04}
, , , . . , ®
1.1 1.2 1.3 1.4 1.5 1.6 1.7

Dielectric Constant

FIG. 3. Computed axial trapping efficienc®) vs relative dielectric constant. Parametérs-1.0 um,
d=10um,x=0.4um, andd =45°.
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A

Z axis

FIG. 4. Geometry of transverse trapping experiments.

1.12 to 1.55. Foe < 1.1 the dielectric sphere does not refract the fields enough to hav
significant effect on the propagation of the beamgferl.55 there is significant back scat-
tering of the beam and the dielectric sphere is pushed away from the focus. The comg
Q values presented here are comparable to the measured results presented in [4]. No
in [4] the axial force was measured in water; hence the dielectric constant used in this p
should be considered relative to the background dielectric. The amorphous silica spt
used in [4] had a relative dielectric constant of 1.12. For this valuexd compute & of
0.008, compared to a measur@dbf 0.006+/—0.001. Also note that in [4] the dielectric
sphere is free to move and hence the focus gpsnot fixed in the experimental setup.

4.2. Transverse Trapping of Microspheres

A dielectric object can also be trapped transversely, with the object adjacent, the fc
spot rather than below it. The geometry of transverse trapping is illustrated in Fig. 4.

Again, the electromagnetic energy gradient is toward the focus spot, so there is a
sibility that the dielectric object will be pulled toward the focus. The parameters for tt
experiment are identical to those for the axial trapping experiment above, except for
orientation of the laser beam. In addition, this computational experiment is performed
two different polarizations of the incident laser beam since the geometry is not symme
As a reference illustration, Fig. 16 shows a snapshot of the electric field intensity fc
dielectric constant of = 1.0; the dielectric sphere is for all intents and purposes invisib
to the laser beam. The laser beam is propagating in the negatixection, with the focus
spot again at the center of the computational mesh. The electric field is polarized in
x direction. Figures 17 and 18 show the electric field intensity for dielectric constants
e =12 ande = 2.0, respectively. These figures are snapshots of the field at the same
stant of time. Note that the laser beam is refracted toward the left (negatiirection),
opposite of what occurs in an off-center billiard ball collision. Hence, qualitatively, cons
vation of momentum implies that the dielectric microsphere is pulled toward the focus s
Figure 19 shows the electric field intensity for a dielectric constaate6.0. In this figure
the laser beam is clearly reflected toward the right (positivdirection), and conserva-
tion of momentum implies that the dielectric sphere will be pushed away from the fot
spot.
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O s oo o o

FIG. 11. Snapshot of electric field intensity fer= 1.0 microsphere, axial experiment.

FIG. 12. Snapshot of electric field intensity fer= 1.2 microsphere, axial experiment.
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FIG. 13. Difference between the= 1.2 ande = 1.0 electric fields clearly shows enhanced forward scattering

FIG. 14. Snapshot of electric field intensity fer= 2.0 microsphere, axial experiment.
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0.2} ®

R

1.5 2 2.5 3 35
Dielectric Constant

FIG.5. Computed transverse trapping efficier@yvs relative dielectric constant,polarization. Parameters
A=21.0um,d=2.0um,x=0.4um, andd =45.

The time-averaged net force on the dielectric sphere is computed in exactly the s
manner for the transverse experiment as for the axial experiment. The force was comg
via (60) for dielectric constants ranging from 1.0 to 4.0. For the transverse trapping exp
ments the computed force has bathndz components, and it is difficult to define a single
trapping efficiencyQ. Instead, we define

(o ¥ cF,
-2z 61
QX_ nP’ QZ nP’ ( )

1.2} °

-14 . . . , [ ] =
1.5 2 2.5 3 3.5 4

Dielectric Constant

FIG.6. Computed transverse trapping efficier@yvs relative dielectric constant,polarization. Parameters
A=0um,d=20um,x=0.4um, andd =45.
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FIG.7. Computed vector force on the dielectric sphere for the transverse trapping expexipeatjzation.
The left figure is fore = 3.0; the right is fore =4.0.

whereFy andF, are thex andz components of the force, respectively. Th€sgare shown

in Figs. 5 and 6. A positiv€, means that thg component of the force is toward the focus
spot, and Fig. 5 illustrates that the dielectric sphere will be pulled toward the focus
particular values of the dielectric constant. Comparing to the axial trapping experiment,
note that the magnitude of the optical forces for the transverse experiment are significz
greater than that obtained for the axial experiment. This is in qualitative agreement \
the measured results in [4], which report transverse trapping efficiencies of 0.15, comp
to 0.006 for the axial experiment. In addition, the sphere is pulled toward the focus fc
large range of dielectric constant, approximately 4 ¢ < 3.7. This phenomenon has not
yet been verified experimentally. It is not clear exactly for what range of dielectric const
the particle is actually trapped by the laser beam. For exampie=&0, Q4 > 0 and the
sphere is pulled toward the axis of the laser beam,@uk 0 and the sphere is pushed
away from the focus spot. On the other hands at4.0 both Q4 <0 andQ; < 0, and the
sphere is clearly not trapped. These forces are illustrated graphically in Fige =810
ande =4.0. The optical scattering changes character at approximately.7.
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FIG.8. Computed transverse trapping efficier@yvs relative dielectric constang,polarization. Parameters
A=10um,d=1.0um,x=0.4um, andd =45,
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FIG. 15. Snapshot of electric field intensity fer= 5.0 microsphere, axial experiment.

FIG. 16. Snapshot of electric field intensity fer=1.0 microsphere, transverse experimenpolarization.
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FIG. 17. Snapshot of electric field intensity fer= 1.2 microsphere, transverse experimenpolarization.

FIG. 18. Snapshot of electric field intensity fer= 2.0 microsphere, transverse experimenpolarization.
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FIG.9. Computed transverse trapping efficier@yvs relative dielectric constant,polarization. Parameters
A=10um,d=1.0um,x=0.4um, andd =45.

The above transverse trapping experiment was repeated for the case of electric field
ized in they direction. Snapshots of the electric field intensity are shown in Figs. 20, 21, ¢
22 corresponding to dielectric constants of 1.2, 2.0, and 10.0, respectively=Fbe and
€ = 2.0 the scattered field is quite similar to that obtained fontipelarization experiment;
again the laser beam is refracted toward the left (negatdiesction), opposite of what oc-
curs in an off-center billiard ball collison. However, the scattering did not change charac
as the dielectric constant increased as it did forxhmolarization experiment. The laser
beam was refracted more and more ascreased. This difference between thandy po-
larization experiments is analogous to plane—plane wave refraction at a dielectric interf
where one polarization exhibits a change of character at a critical value of dielectric cons
(brewster angle for transverse electric polarization) and the other polarization does no

FIG.10. Computed vector force on the dielectric sphere for the transverse trapping expexip@atjzation.
The left figure is fore = 3.0; the right is fore =4.0.
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The time-averaged net force on the dielectric sphere is again computed for a ranc
dielectric constants from 1.0 to 4.0. TReandz-directed forces are converted s via
(61), and thes®’s are shown in Figs. 8 and 9. Tkeomponent of) is quite similar to that
obtained for thex polarization experiment; it is negative for all values of dielectric constar
Thex component ofQ differs from that obtained for the polarization experiment in that
it remains positive for all values of dielectric constant. This means that the sphere is alv
pulled toward the axis of the beam. Again, itis not clear exactly for what range of dielec
constant the sphere is actually trapped by the beam. The vector optical force is illustr
graphically in Fig. 10 fore =3.0 ande = 4.0 and shows that the optical scattering doe
not have an abrupt change of character. Howeverzit@mponent of the force becomes
dominant and it will ultimately be pushed away from the focus spot as the dielectric cons
increases.

5. SUMMARY

An unstructured-grid vector finite element is used for the numerical modeling of opti
gradient traps. The method uses edge vector finite elements as a basis for the electric
and face vector finite elements as a basis for the magnetic flux density. This choice o
sis functions allows for the proper modeling of continuity (discontinuity) of the tangent
(normal) components of the electric field across material discontinuities. In addition, |
choice of basis functions prevents spurious irrotational fields from polluting the soluti
The method allows for tensor permeability, permittivity, and electric and magnetic c«
ductivities. Thus it is a simple matter to implement a Maxwellian absorber to attenu
outgoing electromagnetic waves. A second-order central-difference method is used t
vance the fields and fluxes in a leapfrog manner. The method is shown to be stable
energy conserving, assuming the time step is chosen according to a Nyquist conditior

A 3D unstructured hexahedral grid is used to model the dielectric object and the
rounding space. A laser beam is launched into the computational grid by a time vary
source. As the electromagnetic fields are evolved, the net force on the dielectric ot
is computed by integrating the Maxwell stress tensor over the surface of the object.
net force is a function of time, but since the dielectric object cannot possibly responc
optical frequencies the time-averaged force is computed. The computed optical trap
efficiencies are computed for both axial and transverse trapping geometries foma 1
sphere, using a range of dielectric constants. A simple sphere is used so that the com
results can be compared to previously measured data. The comparison is quite favo
considering the differences between the computational experiment (object location is f
with respect to the beam) and the physical experiment (object is free to move in resp
to the beam).

Optical trapping efficiencies of up tQ =0.05 were obtained for a relative dielectric
constant ot = 1.4 for the axial trapping experiment. We show that the object s trapped ot
when 11 < € < 1.55. By examining the electric fields it is clear that the forward scatterir
is enhanced for this range of dielectric constant.d~arl.1 it appears that the sphere is not
refractive enough to scatter the beam, whereas foll.55 the beam is essentially reflected
from the object, pushing the object away from the focus. The amorphous silica spheres
in the measurements [4] had a relative dielectric constant of 1.12. For this vaduevef
compute &Q of 0.008, compared to a measur@cbf 0.006+/—0.001.
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FIG. 19. Snapshot of electric field intensity fer=5.0 microsphere, transverse experimenpolarization.

FIG. 20. Snapshot of electric field intensity fer= 1.2 microsphere, transverse experimgnpolarization.



OPTICAL GRADIENT TRAPS 35

FIG. 21. Snapshot of electric field intensity fer= 2.0 microsphere, transverse experimgnpolarization.

FIG. 22. Snapshot of electric field intensity fer= 5.0 microsphere, transverse experimenpolarization.
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The simulations of the transverse trapping experiments were quite interesting. We s
that the scattered field is refracted such that the electromagnetic momentum behave
posite of what occurs in an off-center billiard ball collision. With simple conservation
momentum arguments, this explains how the dielectric object is pulled toward the fo
spot. However, this effect was polarization dependent. Fox fiwarization the laser beam
is refracted only for particular values of dielectric constant. When the dielectric const
was increased beyond a critical value ef 3.7 the beam was reflected from the object. Thit
phenomenon was qualitatively visible in the field intensity plots and quantitatively visik
as a change in sign of the net optical force on the objectyfpelarized laser beam, on the
other hand, was refracted more and more as the dielectric constant was increased. Fo
polarizations, the optical trapping force was significantly greater that the transverse trap
force, which is in agreement with the measured results in [4]. However, for the transve
trapping experiments we had difficulty defining a single optical trapping efficingince
the optical force had components in both ¥h@ndz directions. IfQy < 0 itis clear that the
object is pushed away from the focus spot. It is not clear what happens @her0 and
Q; < 0. To resolve this issue it is necessary to have the sphere actually move in resp
to the laser beam, but this represents a significant effort and was beyond the goals o
project.
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